Valvular Heart Disease
Clinical Assessment

Common Clinical Scenarios
- Younger people
 - Functional murmur vs MVP vs bicuspid AV
- Older people
 - Aortic sclerosis vs aortic stenosis

Aortic Stenosis - Etiology
- Young patient think congenital
 - Bicuspid AVD
 - 2% population
 - 3:1 male:female distribution
 - Co-existing coarctation 6% of patients
- Rarely
 - Unicuspid valve
 - Sub-aortic stenosis
 - Discrete
 - Diffuse (large)
- Middle aged patient (4th & 5th decades) think bicuspid or rheumatic disease
- Old patient think degenerative (6th, 7th, 8th decades)

Aortic Stenosis: Symptoms
- Cardinal Symptoms
 - Chest pain (angina)
 - Reduced coronary flow reserve
 - Increased demand-high afterload
 - Syncope (exertional pre-syncope)
 - Fixed cardiac output
 - Vasodepressor response
 - Dyspnea on exertion & rest
- Other signs of LV failure
 - Diastolic & systolic dysfunction

Severity of Stenosis
- Normal aortic valve area 2.5-3.5 cm²
- Mild stenosis 1.5-2.5 cm²
- Moderate stenosis 1.0-1.5 cm²
- Severe stenosis < 1.0 cm²
- Onset of symptoms
 ~ 0.9 cm² with CAD
 ~ 0.7 cm² without CAD

Aortic Stenosis: Physical Findings
- S1
- S2
- S1
- S2

Mild-Moderate
Severe
Aortic Stenosis: Physical Findings

- Intensity DOES NOT predict severity
- Presence of thrill DOES NOT predict severity
- “Diamond” shaped, systolic crescendo-decrescendo
- Decreased, delay & prolongation of pulse amplitude
- Paradoxical S2
- S4 (with left ventricular hypertrophy)
- S3 (with left ventricular failure)

Recognizing Aortic Stenosis

<table>
<thead>
<tr>
<th>Sign</th>
<th>Correlation with Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>JVP-prominent A wave</td>
<td>No</td>
</tr>
<tr>
<td>Carotid-delayed, anechoic</td>
<td>Yes</td>
</tr>
<tr>
<td>A2 audible over carotids</td>
<td>Mean AV gradient < 50 mm Hg and stenosis not severe i.e. AVA > 1.0 cm²</td>
</tr>
<tr>
<td>Apex. sustained, atrial kick</td>
<td>Yes</td>
</tr>
<tr>
<td>- enlarged, displaced</td>
<td></td>
</tr>
<tr>
<td>Thrill</td>
<td>No</td>
</tr>
<tr>
<td>Cardioenously - Clinical/CSR</td>
<td>Yes</td>
</tr>
<tr>
<td>S1, S4</td>
<td></td>
</tr>
<tr>
<td>Paradoxical S2</td>
<td>Yes</td>
</tr>
<tr>
<td>S3, S4</td>
<td>Yes</td>
</tr>
<tr>
<td>SEM, intensity</td>
<td>No</td>
</tr>
<tr>
<td>- late peak</td>
<td>Yes</td>
</tr>
<tr>
<td>ECG, LVEF, LVH</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aortic Regurgitation: Etiology

- Any conditions resulting in incompetent aortic leaflets
 - Congenital
 - Bicuspid valve
 - Aortopathy
 - Cystic medial necrosis
 - Collagen disorders (e.g. Marfan’s)
 - Ehler-Danlos
 - Osteogenesis imperfecta
 - Pseudoxanthoma elasticum
- Acquired
 - Rheumatic heart disease
 - Dilated aorta (e.g. hypertension)
 - Degenerative
 - Connective tissue disorders (e.g. ankylosing spondylitis, rheumatoid arthritis, teens’s syndrome, Giant-cell arthritis)
 - Syphilis (chronic aortitis)

Aortic Regurgitation: Symptoms

- Dyspnea, orthopnea, PND
- Chest pain.
 - Nocturnal angina >> exertional angina
 - ↓ diastolic aortic pressure and increased LVEDP thus ↓ coronary artery diastolic flow)
- With extreme reductions in diastolic pressures (e.g. < 40) may see angina

Peripheral Signs of Severe Aortic Regurgitation

- Quincke’s sign: capillary pulsation
- Corrigan’s sign: water hammer pulse
- Bisferiens pulse (AS/AR > AR)
- De Musset’s sign: systolic head bobbing
- Mueller’s sign: systolic pulsation of uvula

Aortic Regurgitation: Physical Exam

- Widened pulse pressure
 - Systolic – diastolic = pulse pressure
- High pitched, blowing, crescendo diastolic murmur at LSB
- Best heard at end-expiration & leaning forward
- Hands & Knee position

Wave Sound
Central Signs of Severe Aortic Regurgitation

- Apex:
 - Enlarged
 - Displaced
 - Hyper-dynamic
 - Palpable S3
 - Austin-Flint murmur

- Aortic diastolic murmur
 - length correlates with severity (chronic AR)
 - in acute AR - murmur shortens as Aortic DP=LVEDP
 - in acute AR - mitral pre-closure

Assessing Severity of AR

- Assess severity by impact on peripheral signs and LV
 - ↑ peripheral signs = ↑ severity
 - ↑ LV = ↑ severity
 - S3
 - Austin-Flint
 - LVH
 - radiological cardiomegaly

Aortic Regurgitation: Natural History

Asymptomatic %/Y
- Normal LV function (~good prognosis)
 - Progression to symptoms or LV dysfunction < 6
 - Progression to asymptomatic LV dysfunction < 3.5
 - 75% 5-year survival
 - Sudden death < 0.2
- Abnormal LV function
 - Progression to cardiac symptoms 25
- Symptomatic (Poor prognosis)
 - Mortality > 10

TX: Medical → Surgery BEFORE LV dysfunction

Echo Indicators for Valve Replacement in Asymptomatic Aortic & Mitral Regurgitation

<table>
<thead>
<tr>
<th>Type of Regurgitation</th>
<th>LVESD mm</th>
<th>EF %</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic</td>
<td>> 55</td>
<td>< 55</td>
<td>< 0.27</td>
</tr>
<tr>
<td>Mitral</td>
<td>> 45</td>
<td>< 60</td>
<td>< 0.32</td>
</tr>
</tbody>
</table>

Mitral Stenosis Etiology

- Primarily a result of rheumatic fever
 - ~99% of MV’s @ surgery show rheumatic damage
- Scarring & fusion of valve apparatus
- Rarely congenital
- Pure or predominant MS occurs in approximately 40% of all patients with rheumatic heart disease
- Two-thirds of all patients with MS are female.

A 75 year old woman with Recent orthopnea/PND

- Chronic dyspnea Class 2/4
- Fatigue
- Recent orthopnea/PND
- Nocturnal palpitation
- Pedal edema
Mitral Stenosis Pathophysiology

- Normal valve area: 4-6 cm²
- Mild mitral stenosis:
 - MVA 1.5-2.5 cm²
 - Minimal symptoms
- Mild mitral stenosis:
 - MVA 1.0-1.5 cm² usually does not produce symptoms at rest
- Severe mitral stenosis:
 - MVA < 1.0 cm²

Mitral Stenosis Symptoms

- Fatigue
- Palpitations
- Cough
- SOB
- Left sided failure
 - Orthopnea
 - PND
- Palpitation

- AFib
- Systemic embolism
- Pulmonary infection
- Hemoptysis
- Right sided failure
 - Hepatic congestion
 - Edema
- Worsened by conditions that ↑ cardiac output.
 - Exertion, fever, anemia, tachycardia, AFib, intercourse, pregnancy, thyrotoxicosis

Mitral Stenosis Physical Exam

- First heart sound (S1) is accentuated and snapping
- Opening snap (OS) after aortic valve closure
- Low pitch diastolic rumble at the apex
- Pre-systolic accentuation (esp. if in sinus rhythm)

Recognizing Mitral Stenosis

- Palpation:
 - Small volume pulse
 - Tapping apex-palpable S1
 - +/- palpable opening snap (OS)
- Auscultation:
 - Loud S1 - as loud as S2 in aortic area
 - A2 to OS interval inversely proportional to severity
 - Diastolic rumble: length proportional to severity
 - In severe MS with low flow-S1, OS & rumble may be inaudible

Auscultation:

- Width of A2-OS inversely correlates with severity
- The more severe the MS the higher the LAP the earlier the LV pressure falls below LAP and the MV opens

Auscultation - Timing of A2 to OS Interval

- Width of A2-OS inversely correlates with severity
- The more severe the MS the higher the LAP the earlier the LV pressure falls below LAP and the MV opens
Mitral Regurgitation

- Etiology
- Symptoms
- Physical Exam
- Severity
- Natural history
- Timing of Surgery

An 80 year old woman with increasing dyspnea

- Longstanding heart murmur
- Increasing dyspnea & fatigue
- Recent ER visit Dx CHF

Mitral Regurgitation: Etiology

- Valvular-leaflets
 - Myxomatous MV Disease
 - Rheumatic
 - Endocarditis
 - Congenital-clefts
- Chordae
 - Fused/inflammatory
 - Tear/truma
 - Degenerative
 - IE
- Annulus
 - Calcification, IE (abcess)
- Papillary Muscles
 - CAD (ischemia, Infarction, Rupture)
 - HCM
 - Infiltrative disorders
 - LV dilatation & functional regurgitation
 - Trauma

MR Etiology: Surgical series

- MVP(20-70%)
- Ischemia (13-40%)
- RHD (3-40%)
- Infectious endocarditis(10-12%)

MR Pathophysiology

- Chronic LV volume overload ➔ compensatory LVE initially maintaining cardiac output
- Decompensation (increased LV wall tension) ➔ CHF
- LVE ➔ annulus dilation ➔ increased MR
- Backflow ➔ LAE, Afib, Pulmonary HTN

MR Symptoms

- Similar to MS
- Dyspnea, Orthopnea, PND
- Fatigue
- Pulmonary HTN, right sided failure
- Hemoptysis
- Systemic embolization in Afib
Recognizing Chronic Mitral Regurgitation

- Pulse:
 - brisk, low volume
- Apex:
 - hyperdynamic
 - laterally displaced
 - palpable S1 +/- S4
 - late parasternal lift 2° to LA filling
- S1 soft or normal
- S2 wide split (early A2) unless LBBB

- Murmuer-Fixed MR:
 - pansystolic
 - loudest apex to axilla
 - no post extra-systolic accentuation
- Murmuer-Dynamic MR(MVP)
 - mid systolic
 - + click
 - ↑ upright
 - S3 / flow rumble if severe

Recognizing Acute Severe Mitral Regurgitation

- Acute severe dyspnea, CHF & hypotension
- LV size normal
- LV may/may not be hyperdynamic
- Load S1
- Systolic murmur may/may not be pan-systolic
- Inflow/rumble
- S3 present-may be only abnormality
- RV lift
- TTE/TEE for diagnosis
 - Chordal or papillary muscle rupture/tear
 - Infarction with papillary muscle ischaemia or tear
 - Infectious endocarditis with leaflet perforation or disruption or chordal tear
 - Flail MV segment

Comparing AS and MR

Systolic Murmurs
- Aortic stenosis
- Mitral insufficiency
- Mitral valve prolapse
- Tricuspid insufficiency

Diastolic Murmurs
- Aortic insufficiency
- Mitral stenosis

Assessing Severity of Chronic Mitral Regurgitation

Measure the Impact on the LV:
- Apical displacement and size
- Palpable S3
- Longer/louder MR murmer (chronic MR)
- S3 intensity/ length of diastolic flow rumble
- Wider split S2 (earlier A2) unless HPT narrows the split

MR Echocardiography

- Baseline evaluation to identify etiology, quantify severity of MR
- Assess and quantify LV function and dimensions
- Annual or semi-annual surveillance of LV function, estimated EF and LVEDS in asymptomatic severe MR
- To establish cardiac status after change in symptoms
- Baseline study post MVR or repair
MR Echocardiography

- **Etiology:**
 - flail leaflets (chord/pap rupture)
 - thick (RHD)
 - post mv1 of leaflets (MVP)
 - vegetations (IE)
- **Severity:**
 - regurgitant volume/fraction/orifice area
 - LV systolic function
 - increased LV/LA size, EF

MR Stages

- LV size and function defined by echo
- **Stage 1-compensated:**
 - End-diastolic dimension less 63mm, ESD less 42mm
 - EF more than 60
- **Stage 2-transitional**
 - EDD 65-68mm, ESD 44-45mm, EF 53-57
- **Stage 3-decompensated**
 - EDD more than 70mm, ESD more than 45mm, EF less than 50

Echo Indicators for Valve Replacement in Asymptomatic Aortic & Mitral Regurgitation

<table>
<thead>
<tr>
<th>Type of Regurgitation</th>
<th>LVESD mm</th>
<th>EF %</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic</td>
<td>> 55</td>
<td>< 55</td>
<td>< 0.27</td>
</tr>
<tr>
<td>Mitral</td>
<td>> 45</td>
<td>< 60</td>
<td>< 0.32</td>
</tr>
</tbody>
</table>

RECOMMENDED FREQUENCY OF ECHOCARDIOGRAPHY IN PATIENTS WITH CHRONIC MITRAL REGURGITATION AND PRIMARY MITRAL-VALVE DISEASE.

<table>
<thead>
<tr>
<th>SEVERITY OF MITRAL REGURGITATION</th>
<th>LEFT VENTRICULAR FUNCTION*</th>
<th>FREQUENCY OF ECHOCARDIOGRAPHIC FOLLOW-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Normal LV size and EF</td>
<td>Every 6 mo</td>
</tr>
<tr>
<td>Moderate</td>
<td>Normal LV size and EF</td>
<td>Annually</td>
</tr>
<tr>
<td>Moderate</td>
<td>ESD >40 mm or EF =0.65</td>
<td>Every 1-2 yr</td>
</tr>
<tr>
<td>Severe</td>
<td>ESD >40 mm or EF =0.65</td>
<td>Annually</td>
</tr>
<tr>
<td>Severe</td>
<td>LVESD >60 mm or EF =0.65</td>
<td>Every 5 yr</td>
</tr>
</tbody>
</table>

Mitral Valve Prolapse: Epidemiology

- Affects 5-10% of population
- Most common cause of isolated severe MR
- Females >> males; Ages of 14 and 30 years
- Strong hereditary component (? autosomal dominant)
- 2° to failure of apposition/coaptation of the anterior and posterior mitral valve leaflets.
- Results form diverse pathologic conditions, but cause is unknown in a majority of pts

Mitral Valve Prolapse: Symptoms

- Majority are asymptomatic for entire life
- Palpitations
- Chest pain (atypical).
 - Often substernal, prolonged, poorly related to exertion, and rarely resembles typical angina
- Syncope
Mitral Insufficiency: Physical Exam

- Fixed mitral regurgitation
- Mitral valve prolapse

Mitral Valve Prolapse: Physical Exam

- Most important finding: mid → late systolic click.
 - Acute tensing of the mitral valve chordae
- Variable murmurs:
 - high pitched late systolic crescendo-decrescendo murmur,
 - Occasionally “whooping” or “honking” at the apex

Mitral Insufficiency:

S1 S2
 C S1

Wave Sound

Mitral Valve Prolapse:

S1 C S2

• Most important finding: mid → late systolic click.
 - Acute tensing of the mitral valve chordae

Variable murmurs:

- high pitched late systolic crescendo-decrescendo murmur,
- Occasionally “whooping” or “honking” at the apex

Mitral Valve Prolapse:

• Arrhythmias (Usually PVC, PSVT>>VT)
• Transient cerebral ischemic (embolic – rare)
• Infective endocarditis (if assoc w/ MR)
• Sudden death (rare)